

HUMAN BEHAVIOUR IN FIRE PAPERS

A Compendium of Research Papers

(1998 – 2013)

CHAPTERS

► Welcome

► Author Index

► Book List

The conferences where papers were originally presented and their page number in the proceedings are indicated after each paper title.

Human Behaviour in Fire Conferences (1998 – 2012):

HB1998
HB2001
HB2004
HB2009
HB2012

Interflam Conferences (1999 – 2013):

IFL99
IFL01
IFL04
IFL07
IFL10
IFL13

Interscience Communications Ltd
West Yard House,
Guildford Grove,
Greenwich SE10 8JT
UK
Tel: +44 (0)208 692 5050
Email:
office@intersciencecomms.co.uk
www.intersciencecomms.co.uk

- Research Reviews, Strategy and Needs
- Decision Making, Adaptive Management and Emergency Response
- Alert Systems - Recognition, Intelligibility and Impact
- Pre-Evacuation Behaviour/Time
- Recognition of and Response to Fire Cues/Alarm During Sleep
- Wayfinding - Egress Complexity, Exit Choice Behaviour and Impact of Signage
- Understanding and Modelling Smoke-Egress Interactions
- Movement Dynamics - Speed, Density and Flow, Merging
- Evacuation of Vulnerable Populations - Policy, Strategies, Capabilities and Behaviour
- Understanding Behaviour from Real Emergencies
- Behaviours and Risk Factors in Residential Fires
- Understanding Behaviour (Alternative Methodologies including Virtual Reality)
- Behavioural/Risk Modelling
- Computational Modelling - Development, Validation and Verification
- Evacuation Modelling - Reconstruction, Investigation, Comparison and Application
- Human Behaviour and Performance Based Design/Regulation
- Data Generation and Use in Evacuation Modelling and Performance Based Design
- Hazard Criteria in Performance Based Design
- Evacuation Strategies
(including Phased Evacuation, Defend in Place, Use of Lifts, Escalators)
- Evacuation and Design of Transportation Systems
- Fire Safety Attitudes, Education and Training
- Emergency Planning and Preparedness

Research Reviews, Strategy and Needs

- 1.1 Engineering Life Safety - A Proposal for Future International Strategy [HB1998] [Pages 39 - 46]
W.H.K. Becker
- 1.2 A Way Forward [HB1998] [Pages 59 - 70]
D. O'Brien
- 1.3 Human Behaviour in Fire: The Development and Maturity of a Scholarly Study Area [HB1998] [Pages 3 - 12]
J.L. Bryan
- 1.4 An Administrator's View of Human Behavioural Research from 1975 to 1995 [HB1998] [Pages 31 - 38]
B.B. Pigott
- 1.5 A Personal Perspective on Research, Consulting and Codes/Standards Development in Fire-Related Human Behaviour, 1969-1997 with an Emphasis on Space and Time Factors [HB1998] [Pages 71 - 82]
J Pauls, Independent Consultant In Building Use And Safety, USA
- 1.6 Human behaviour research - What information do the fire safety engineers really need? [HB2001] [Pages 381 - 390]
Mahmut Horasan, AGAL - Scientific Services Laboratory, Australia, Wendy Saunders, Victoria University of Technology, Australia
- 1.7 Directions and strategies for research on human behavior and fire are we prepared to support decision-making on the major themes? [HB2004] [Pages 11 - 20]
John Hall, Jr. National Fire Protection Association, USA
- 1.8 Suggestions on evacuation models and research questions [HB2004] [Pages 23 - 34]
Jake Pauls, Independent Consultant In Building Use And Safety, USA
- 1.9 A tour d'horizon of government fire policy and the role of fire research [HB2004] [Pages 1 - 10]
Clive Norris, Fire and Rescue Service Directorate, Office of the Deputy Prime Minister, UK
- 1.10 Marks & Spencer plc fire safety policy [HB2004] [Pages 347 - 354]
Stuart Rogers, Marks and Spencer plc, UK
- 1.11 Refocusing on the way forward while building on our roots [HB2012] [Pages 2-8]
Jake Pauls Consulting Services, USA

Decision Making, Adaptive Management and Emergency Response

- 2.1 The Role of Time Pressure and Stress on the Decision Process During Fire Emergencies [HB1998] [Pages 191 - 202]
F. Ozel
- 2.2 A Hypothetical Cognitive Model for Understanding Human Behavior in Fire [HB1998] [Pages 203 - 212]
MD. Chubb, NE. Groner, G. Shephard
- 2.3 Perception of Threat in Incipient Cues by Naive Occupants [HB1998] [Pages 223 - 230]
P.Brennan

2.4 User-centered design can produce safer and more cost-effective buildings by supporting the adoptive responses of emergency teams and occupants [HB2004] [Pages 457 - 462]
Norman Groner, John Jay College Of Criminal Justice, USA, Vincent Brannigan, University of Maryland, USA, Anthony Kilpatrick, Glasgow Caledonian University, UK

2.5 A situation awareness requirements analysis for the use of elevators during fire emergencies [HB2009] [Pages 61 - 72]
Norman Groner, John Jay College, City University of New York, USA

2.6 How well will your emergency plan work? – A technique to assess human errors and human behaviour in emergency response [HB2009] [Pages 433 - 446]
S Y Zachary Au, Human Interactions Limited, UK

2.7 On-line information and decision-support in building egress [HB2009] [Pages 447 - 458]
Elise Miller-Hooks, University of Maryland, USA

2.8 Application of adaptive management concepts to building evacuation and emergency response [HB2009] [Pages 459 - 470]
Brian Meacham, Worcester Polytechnic Institute, USA

2.9 Informed emergency responses through improved situation awareness (Discussion Panel) [HB2009] [Pages 531 - 542]
Jake Pauls (Convener and Moderator), Jake Pauls Consulting Services, Norman Groner, John Jay College of Criminal Justice, Steve Gwynne, Hughes Associates, Inc., Erica Kuligowski, National Institute of Standards and Institute, Amanda Ripley, Journalist and Author, USA, Guylène Proulx, National Research Technology, Brian Meacham, Worcester Polytechnic Council, Canada and Ian Thomas, Victoria University, Australia

2.10 Sensor-linked simulation for emergency response [HB2009] [Pages 561 - 566]
Jeremy Fraser-Mitchell, BRE Global and Sung-Han Koo, Stephen Welch, The University of Edinburgh, UK

2.11 Mathematical modeling of command and control in evacuation involving large public gatherings [HB2012] [Pages 292 - 303]
L Feng, E Miller-Hooks, V Brannigan, University of Maryland, USA

2.12 Human behaviour in crisis situations: A cross-cultural investigation in order to tailor security-related communication [HB2012] [Pages 593 - 599]
Lena Kecklund, S Petterson, M Gabrielsson, MTO Safety AB, Sweden

2.13 The UK BeSeCu firefighter study: A study of UK firefighters' emotional, cognitive and behavioural reactions to emergencies [HB2012] [Pages 86 - 97]
Lynn Hulse, E Galea, University of Greenwich, UK

Alert Systems (Recognition, Intelligibility, Impact)

3.1 The Impact of Voice Communication Messages during a Residential Highrise Fire [HB1998] [Pages 265 - 276]
G. Proulx

3.2 On the use of voice alarm systems [HB2001] [Pages 185 - 196]
Tom Grace, Arup Fire, Australia, Per Olsson, Arup Fire, Hong Kong, Neil Woodger, Arup Acoustics, USA

3.3 An approach to fire alarm system for people with hearing difficulties [HB2004] [Pages 501 - 506]
Hiroyuki Tamura, Daisuke Kozeki, Ken-Ichi Takanashi, National Research Institute Of Fire And Disaster, Japan

3.4 Effect of occupants and room and system characteristics on speech intelligibility measurements for emergency voice communication systems [IF2007] [Pages 195-202]
John Woycheese, Hughes Associates, Inc., USA

3.5 Recollection, identification and perceived urgency of the temporal three evacuation alarm in an Australian sample [HB2012] [Pages 128 - 137]
Michelle Ball, T Farley, Victoria University, Australia

3.6 How to efficiently inform people about a fire in a high rise building? [HB2012] [Pages 138 - 147]
Piotr Tofilo, M Cisek, The Main School of Fire Service, W Trzaska-Durski, Independent Fire Safety Management Consultant, Poland

3.7 Which acoustic and optical signals are best suited for evacuation alarms? – An empirical study on the characteristics of signals [HB2012] [Pages 575 - 580]
Robin Palmgren, Fire AB, J Åberg, Sweco AB, D Nilsson, Lund University, Sweden

Pre-Evacuation Behaviour and Time

4.1 Occupant behaviour and response time - results from evacuation experiments [HB2001] [Pages 159 - 166] *Håkan Frantzich, Lund University, Sweden*

4.2 An analysis of the recognition and response behaviours of evacuees of WTC 1 on 9/11 [HB2009] [Pages 659 - 670]
N.C.McConnell, Queens University Belfast and Karen Boyce, T.Jim Shields, University of Ulster, UK

4.3 Investigating the impact of culture on evacuation behaviour [IF2010] [Pages 879-892]
Edwin Galea, S Deere, G Sharp, L Filippidis, L Hulse, University of Greenwich, UK

4.4 Theory Building: An examination of the pre-evacuation period of the 2001 WTC disaster [HB2012] [Pages 24 - 36]
Erica Kuligowski, National Institute of Standards and Technology (NIST), USA

4.5 Investigating the impact of culture on evacuation behaviour – A Polish Data-Set [HB2012] [Pages 62 - 73]
Edwin Galea, G Sharp, M Sauter, S Deere and L Filippidis, University of Greenwich, UK

4.6 Investigating the impact of culture on evacuation behaviour – a UK data-set [IF2013] [Pages 893-905]
Edwin Galea, G Sharp, L Filippidis, S Deere, M Sauter, University of Greenwich, UK

Recognition of and Response to Fire Cues/Alarm During Sleep

5.1 Nocturnal Olfactory Response to Smoke Odor [HB1998] [Pages 231 - 242]
J Lynch

5.2 Improving the Waking Effectiveness of Fire Alarms in Residential Areas [HB1998] [Pages 243 - 252]
T Grace

5.3 Recognition of fire cues during sleep [HB2001] [Pages 241 - 252]
Dorothy Bruck & Patricia Brennan, Victoria University, Australia

5.4 The effectiveness of different alarms in waking sleeping children [HB2004] [Pages 279 - 290]
Dorothy Bruck, Sharnie Reid, Jefoon Kouzma, Michelle Ball, Victoria University, Australia

5.5 The effect of alcohol upon response to fire alarm signals in sleeping young adults [HB2004] [Pages 291 - 302]
Michelle Ball & Dorothy Bruck, Victoria University, Melbourne, Australia

5.6 The salience of fire alarm signals for sleeping individuals: a novel approach to signal design [HB2004] [Pages 303 - 314]
Michelle Ball, Dorothy Bruck, Victoria University, Australia

5.7 Community based research on the effectiveness of the home smoke alarm in waking up children [HB2009] [Pages 335 - 344]
Dorothy Bruck, Ian Thomas, Victoria University, Australia

5.8 Sleep inertia in the context of emergency evacuation: a review of what we do and do not know [HB2009] [Pages 355 - 362]
Dorothy Bruck, Melanie Tokley, Victoria University, Australia

5.9 The use of auditory, tactile and visual alarm signals: A focus on the effectiveness of light [HB2009] [Pages 363 - 374]
Michelle Ball, Dorothy Bruck, Ian Thomas, Victoria University, Australia

Wayfinding Including Egress Complexity, Exit Choice Behaviour and Impact of Signage

6.1 How Complex is the Egress Capability of Your Design? [HB1998] [Pages 601 - 610]
HA. Donegan, JR. Taylor

6.2 Fire Alarm in a Public Building: How Do People Evaluate Information and Choose Evacuation Exit? [HB1998] [Pages 213 - 222]
L. Benthorn, H. Frantzich

6.3 Effect of Wall-Surface Luminance and Light Source Colors on Selecting an Escape Route in a Model Space [HB1998] [Pages 583 - 592]
K. Kubota, Y. Murosaki, I. Takahasi

6.4 Occupant Evacuation and Orientation Problems in Large Halls - An Exhibition Building Case Study [HB1998] [Pages 573 - 582]
MB.N. Horasan

6.5 Effects of Passage Width on Choice of Egress Route at a T-Junction in a Building [HB1998] [Pages 593 - 600]
Y. Murosaki, H. Hayashi, T. Nishigaki

6.6 Strategic Research Issues in Emergency Wayfinding by the Blind and Partially Sighted [HB1998] [Pages 541 - 552]
J. Hinks, P. Green, W.J. Thompson, C. Brotherton, B. Robertson, R. Webb, P. Aspinall, G. Ferrier

6.7 Assessment of Legibility of Egress Route in a Building from the Viewpoint of Evacuation Behavior [HB1998] [Pages 553 - 562]
H. Notake, M. Ebihara, Y. Yashiro

6.8 Escape Syntax [HB1998] [Pages 799 - 808]
B. Thompson, J. Hinks, P. Green

6.9 A behavioural solution to the learned irrelevance of emergency exit signage [HB2001] [Pages 23 - 34]
Taz Mc Clintock, T. J. Shields, A.H. Reinhardt-Rutland & Julian C. Leslie. University of Ulster at Jordanstown, Northern Ireland

6.10 A Possibility measure method for predicting wayfinding patterns of evacuees under fire situations [HB2001] [Pages 363 - 372]
Siu Ming Lo, KK Yuen, City University of Hong Kong, J Lu, Z Fang, Wuhan University, PR China

6.11 Evaluation of egress complexity and its change by arrangement of wayfinding guidance signs using random walk model [HB2001] [Pages 373 - 380]
Yoshimura Hidemasa, Osaka University, JAPAN

6.12 Visibility catchment area of exits and signs, [IF2001] [Pages 1529-1534]
Edwin Galea, L Filippidis, P Lawrence, S Gwynne, Univ of Greenwich, UK

6.13 Advances in egress complexity [HB2004] [Pages 411 - 418]
G Livesey, H Donegan ,G McLeavy, University Of Ulster, UK

6.14 Principles for the selection of evacuation routes in underground mall [IF2007] [Pages 1699-1709]
Yuji Hasemi, S Moriyama, S Tsuchiya, J Ogawa, S Lee, T Jin, T Sano, Waseda University and W Weng, Waseda University Japan and Tsinghua University, PR China

6.15 Evaluation and comparison of different installations of photoluminescent marking in stairwells of a highrise building [IF2007] [Pages 183-194]
Noureddine Bénichou, G Proulx, National Research Council, Canada

6.16 A study on the adaptive guidance-system and the evacuation experiments for simulation model [HB2009] [Pages 591 - 596]
Hidekazu Kakei, The University of Tokushima, Toshihiko Sako, Tomonori Sano, Waseda University and Hiroomi Sato, ERS Corp., Japan

6.17 Experimental study of the effectiveness of emergency signage [HB2009] [Pages 289 - 300]
Hui Xie, Lazaros Filippidis, Edwin Galea, Darren Blackshields, Peter Lawrence, University of Greenwich, UK

6.18 Implementation of cognitive mapping, spatial representation and wayfinding behaviours of people within evacuation modelling tools [HB2009] [Pages 501 - 512]
Anand Veeraswamy, Peter Lawrence, Edwin Galea, University of Greenwich, UK

6.19 Study on the influence of smoke and exit signs on fire evacuation - analysis of evacuation experiments in a real and virtual hotel [IF2010] [Pages 801-812]
Margrethe Kobes, Netherlands Institute for Safety / VU University Amsterdam, I Helsloot, VU University Amsterdam, B de Vries, Eindhoven University of Technology and J Post, N Oberijé, K Groenewegen, Netherlands Institute for Safety, The Netherlands

6.20 Study on the visual environment designs for effective evacuation guidance - Measurement and evaluation of sign installation in escape routes [IF2010] [Pages 1479-1485]
Yuki Akizuki, S Okuda, M Iwata, T Tanaka, University of Toyama, Japan

6.21 Human wayfinding abilities to reach an area of refuge in a virtual environment [HB2012] [Pages 557 - 562]
Elisabetta Carattin, V Tatano, University of Venice, E Labate, C Meneghetti, F Pazzaglia, University of Padua, Italy

6.22 Calculation method of ease to find escape routes by configuration factor of installed signs in visual field of evacuees [HB2012] [Pages 563 - 568]
Yuki Akizuki, University of Toyama, T Tanaka, Kyoto University, S Okuda, Doshisha Women's College of Liberal Arts, M Iwata, Setsunan University, Japan

6.23 LabCUBEegress: A laboratory for a selective study of people's movement and human behaviour during egress situations [HB2012] [Pages 148 - 158]
Elia Tosolini, L C Pecile, S Grimaz, SPRINT-Lab, Italy

6.24 Cultural elements of wayfinding in fire safety engineering. Results from recent experimental work in Cyprus [IF2013] [Pages 907-918]
Georgios Boustras, K Katzis, European University Cyprus, N Paris, Civil Defense Department and P Papazoglou, Cyprus Research Promotion Foundation, Cyprus

6.25 Experimental study of the effectiveness of dynamic signage system [IF2013] [Pages 967-978]
Edwin Galea, H Xie, P Lawrence, University of Greenwich, UK

Understanding and Modelling Smoke-Egress Interactions

7.1 On Quantifying Perceptions of Smoke [HB1998] [Pages 611 - 620]
Y. He, P. Brennan

7.2 Escape Through Smoke: Assessment of Human Behaviour and Performance of Wayguidance Systems [HB1998] [Pages 631 - 638]
A.W. Heskstad, KS. Pedersen

7.3 Development of an Integrated Fire Modelling Environment for the Study of Smoke-Egress Interactions [HB1998] [Pages 649 - 662]
R. Chitty, S. Kumar

7.4 Evacuation from Smoke Filled Corridors [HB1998] [Pages 639 - 648]
E. W. Janse, P.H.E. van de Leur, N.J. van Oerle

7.5 Successful evacuation in smoke: Good luck, good health or good management? [IF1999] [Pages 697-706]
Patricia Brennan, VUT, Australia

7.6 Correlation between physiological index and psychological index during stressful fire experiments [HB2001] [Pages 263 - 274]
Katsuaki Kubota, Fujita Corporation, Japan

7.7 Visibility of four exit signs and two exit door markings in smoke as gauged by twenty people [HB2001] [Pages 147 - 158]
M S Wright, G K Cook and G M B Webber, The University of Reading, UK

7.8 The effects of smoke on people's walking speeds using overhead lighting and wayguidance provision [HB2001] [Pages 275 - 284]
M S Wright, G K Cook and G M B Webber, University of Reading, UK

7.9 Neurobehavioural outcomes and incidence of trauma following domestic fires [HB2004] [Pages 91 - 102]
Nigel Mcconnell, Karen Boyce, Thomas J Shields, Teresa Rushe, University of Ulster, UK

7.10 Evacuation experiments in a smoke filled tunnel [HB2004] [Pages 229 - 238]
Håkan Frantzich, Daniel Nilsson, Lund University, Sweden

7.11 Simulation of perceived visibility in smoke laden environment [HB2009] [Pages 267 - 278]
Qihui Zhang, Philip Rubini, University of Hull, UK

7.12 Modelling the visibility of emergency signs in smoke and smoke-free conditions [HB2009] [Pages 279 - 288]
Volker Schneider, IST GmbH, Germany

7.13 Calculating methods of evacuee's behavior based on the floor illuminance in fire smoke estimated by two layer zone mode [HB2009] [Pages 301 - 312]
Yuki Akizuki, University of Toyama, Naoya Hara, Kansai University and Takeyoshi Tanaka, Kyoto University, Japan

7.14 Quantitative validation of simulated visibility in smoke laden environments [IF2010] [Pages 825-835]
Qihui Zhang, Geodata SpA, Italy and P Rubini, University of Hull, UK

7.15 Experimental study on accident perception by smoke at an initial fire [HB2012] [Pages 581 -5869]
Yoshifumi Ohmiya, Tokyo University of Science, T Sano, Waseda University, Japan

7.16 The impact of smoke on walking speed [IF2013] [Pages 955-965]
Karl Fridolf, K Andréa, D Nilsson, H Frantzich, Lund University, Sweden

Movement Dynamics (Speed, Density, Flow, Merging)

8.1 Evacuation plan for underground space of Taipei Station of Taiwan[IF1999] [Pages 735-746]
Pei-Chun Shao, Yoshiteru Murosaki, Graduate School of Science and Tech of Kobe Univ, Japan

8.2 Regional characteristics of urban evacuation - About evacuating pedestrian velocity [HB2001] [Pages 511 - 520]
Pei-Chun Shao, Y Murosaki, Graduate School Kobe University, Japan

8.3 Crowd characteristics and egress at stadia [HB2004] [Pages 367 - 376]
Kristin Hoskin, University Of Canterbury & Kestrel Group, Michael Spearpoint University Of Canterbury, New Zealand

8.4 Capacity flows on stadia stairs; potential for low flow rate systems [HB2004] [Pages 489 - 494]
David Brocklehurst, M.Green, Buro Happold, D.Bouchlaghem, D.Pitfield, Loughborough University, K Still, Crowd Dynamics Limited, UK

8.5 Bottleneck capacity estimation for pedestrian traffic [IF2007] [Pages 1423-1428]
Tobias Rupprecht, W Klingsch, University of Wuppertal and A Seyfried, M Boltes, Central Institute for Applied Mathematics, Research Centre Jülich, Germany

8.6 Capacity estimation for emergency exits and bottlenecks [IF2007] [Pages 247-258]
Armin Seyfried, O Passon, B Steffen, M Boltes, Central Institute for Applied Mathematics and T Rupprecht, A Winkens, W Klingsch, University of Wuppertal, Germany

8.7 An experimental study on the evacuation flow of crowd including wheelchair users [HB2009] [Pages 579 - 584]
Taku Shimada, Akeno Fire Research Institute and Hideo Naoi, Tokyo University of Science, Japan

8.8 Experimental studies to investigate merging behaviour in a staircase [HB2009] [Pages 111 - 122]
Karen E Boyce, Jim Shields, University of Ulster and David Purser, Hartford Environmental Research, UK

8.9 Analysis on occupants' escape speed and reason of bottle-neck occurrence through the trial evacuation experiment at a high-rise apartment housing [HB2009] [Pages 123 - 134]
Jun-ho Choi, Hyun-seung Hwang, Won-hwa Hong, Yeol Choi, Kyungpook National University, Korea

8.10 Who defers to whom? Deference behaviour on stairs [HB2009] [Pages 135 – 146]
Marie Melly, Patrick Lennon, Ruth Lennon, Letterkenny Institute of Technology, Ireland

8.11 Building egress flow rates – Research, application & limitation [IF2010] [Pages 1487-1492]
Matthew Salisbury, M Slatter, A Slattery, Michael Slattery Associates Fire Engineers, UK & Ireland and T Denby, Axiomatic Technology Limited, UK

8.12 Experimental study on crowd flow through an opening connected to a crowded corridor: A comparison of experiment and multi-agent simulation [HB2012] [Pages 206 - 217]
Tomonori Sano, Waseda University, A Jo, Takenaka Corporation, Y Ikehata, Taisei Corporation, Japan

8.13 Psychophysical relation laws for pedestrian flows parameters [HB2012] [Pages 49 - 61]
Dmitry Samoshin, V Kholshchevnikov, B Serkov, Academy of State Fire Service of Russia, A Kosatchev, All-Russian Research Institute for Fire Protection, Russia

8.14 Study on congestion in stairs during phased evacuation in a high-rise building - Analysis based on the observational data of a real total evacuation drill [HB2012] [Pages 171 - 181]
Hiroyuki Kadokura, Tokyu Research Institute, A Sekizawa, S Masuda, Tokyo University of Science, T Sano, M Yajima, Waseda University, Japan

8.15 Effective density measurement methods on stairs [HB2012] [Pages 182 - 193]
Bryan Hoskins, Oklahoma State University, USA

8.16 Estimation of crowd density by pressure on human body under experimentally overcrowded condition [HB2012] [Pages 284 - 291]
Hidemasa Yoshimura, Osaka Institute of Technology, Japan

8.17 Walking speed data of fire drills at an elementary school [HB2012] [Pages 98 - 108]
Rosaria Ono, University of São Paulo, M Valentin, Vargas Valentin Projetos Ltda, F Vittorino, Institute for Technological Research of São Paulo State, Brazil

8.18 Children evacuation: Empirical data and egress modelling [HB2012] [Pages 109 - 119]
Arturo Cuesta, J Capote, D Alvear, GIDAI Group - University of Cantabria and J Hernand, IRTECH, Spain

8.19 Investigating stair-floor merging phenomena and the impact of single and multiple entry points [HB2012] [Pages 194 - 205]
Shrikant Sharma, R Hayward, A Castellanos, D Brocklehurst, Buro Happold Ltd, UK

8.20 The parameters of pedestrian flows in hospital during fire evacuation [IF2013] [Pages 1003-1012]
Dmitry Samoshin, R Istratov, Academy of State Fire Service of the Ministry of the Russian Federation for Civil Defence, Russia

8.21 Variance analysis of maritime passenger clusters travel speeds with regards to the head's walking speed and head counts [IF2013] [Pages 559-564]
Soo-Ho Lee, W-H Hong, Kyungpook National University, J-H Choi, Pukyong National University, K-I Hwang, Korea Maritime University and W-J Na, B-H Son, C-H Ahn, Daegu Technical University, Republic of Korea

Evacuation of Vulnerable Populations (Policy, Strategies, Capabilities, Behaviour)

9.1 Evacuation Behaviours of Occupants with Learning Difficulties in Residential Homes [HB1998] [Pages 369 - 380]
T.J Shields, B. Smyth, K.E. Boyce, G.WH. Silcock

9.2 Evaluating Feasibility, Accessibility and Manoeuvrability: A Knowledge Based Systems Approach [HB1998] [Pages 361 - 368]
J.R. Taylor, HA. Donegan

9.3 Sounding out the Disabled in the Lower-Extremities on their Escape Behaviour in Building Fire for Safer Fire Escape Design [HB1998] [Pages 353 - 360]
H. Yoshimura

9.4 Emergence of Aged Populace:Who is at Higher Risk in Fires? [HB1998] [Pages 333 - 340]
S. Kose

9.5 An investigation on proportion and capabilities of disabled people at shopping centers for fire safety [HB2001] [Pages 167 - 174]
Akihiko Hokugo, A Tsumura, Y Murosaki, Graduate School of Science and Technology, Kobe University, Japan

9.6 Evacuation safety for locomotion disabled people [HB2001] [Pages 445 - 450]
Anna Brand, Malin Sörqvist, Pia Håkansson & Jan Erik Johansson, Räddningstjänsten Västra Blekinge, Sweden

9.7 Functional Importance of acuity and contrast sensitivity on locomotion in the built environment [HB2001] [Pages 503 - 510]
Vivekananda-Schmidt, P., Shields, T.J., Reinhardt-Rutland, A.H., & Anderson, R.S., University of Ulster, UK

9.8 Care of vulnerable populations: Who are vulnerable to fires and what care is needed for their fire safety? [HB2004] [Pages 267 - 278]
Ai Sekizawa, National Research Institute Of Fire And Disaster, Japan

9.9 Development of step-by-step ramps for assisting wheelchair users' evacuation in emergencies [HB2004] [Pages 507 - 512]
Hidemasa Yoshimura, Mikiya Fujimoto, Osaka University, Japan

9.10 Can you open the door and get out in an emergency? An explorative study of usability of exit devices in Sweden [HB2004] [Pages 431 - 442]
Lena Kecklund, MTO Psychology, Björn Hedskog, Staffan Bengtson, Brandskyddslaget, Sweden

9.11 Stair descent devices: An overview of current devices and proposed framework for standards and testing [HB2009] [Pages 601 - 606]
Glenn Hedman, University of Illinois at Chicago, USA

9.12 Behaviour, fire and older people: Implications of the demographic growth of a vulnerable population [HB2009] [Pages 345 - 354]
Ian Miller, Heimdall Consulting Ltd, New Zealand

9.13 Evacuation of people with disabilities on stairs [HB2012] [Pages 315 - 327]
Erica Kuligowski, B Hoskins, R Peacock, E Wiess, National Institute of Standards and Technology, USA

9.14 An analysis of the performance of trained staff using movement assist devices to evacuate the non-ambulant [HB2012] [Pages 328 - 339]
Aoife Hunt, E Galea, P Lawrence, University of Greenwich, UK

9.15 Ergonomic evaluation of manually carried and track-type stair descent devices used for the evacuation of high rise buildings [HB2012] [Pages 340 - 345]
Steven Lavender, J Mehta, S Park, The Ohio State University, G Hedman, P Reichelt, K Conrad, The University of Illinois at Chicago, USA

9.16 Evacuating vulnerable and dependent people from a fire in a building [HB2012] [Pages 359 - 370]
David Charters, D Crowder, BRE Global, UK

9.17 Evacuation characteristics of blind and visually impaired people: Walking speeds on horizontal planes and descending stairs [HB2012] [Pages 304 - 314]
Janne Sørensen, A Dederichs, Technical University of Denmark, Denmark

9.18 Evacuation strategy for mobility on disaster of hospital ward patients [HB2012] [Pages 541 - 546]
Shin'ichi Tsuchiya, Y Hasemi, Waseda University, Japan

9.19 Knowledge of refuge areas in the evacuation of multi-storey buildings: the end users' perspectives [HB2012] [Pages 410 - 421]
Nigel C McConnell & K Boyce, FireSERT, University of Ulster, UK

9.20 Status report on the development of the RESNA performance standard for emergency stair travel devices [HB2012] [Pages 547 - 550]
Glenn Hedman, University of Illinois at Chicago, U.S.A

9.21 The problems of elderly people safe evacuation from senior citizen health care buildings in case of fire [HB2012] [Pages 587 - 592]
Dmitry Samoshin, V Kholshevnikov, R Istratov, Academy of State Fire Service, Russia

9.22 Behavioral aspects of movement down stairs during elementary school fire drills [HB2012] [Pages 120 - 127]
Aldis Run Larusdottir, A Dederichs, Technical University of Denmark, Denmark

Understanding Behaviour from Real Emergencies

10.1 Real Fire Research- People's Behaviour in Fires [HB1998] [Pages 173 - 180]
N. Townsend

10.2 Research on Conflagration in Urban Area and Wide-Area Evacuation [HB1998] [Pages 779 - 788]
Y. Muroasaki, P-C. Shao

10.3 Comparison of Behaviour in Building and Bushfire Emergencies [HB1998] [Pages 181 - 190]
WL. Saunders

10.4 Human Behaviour in Two Similar Industrial Fires [HB1998] [Pages 167 - 172]
D.V. Dumitrescu

10.5 Study into Evacuation of Residents Following a Serious Fire: Lightfoot Street, Chester, Cheshire, 25 October 1996 [HB1998] [Pages 788 9 - 798]
D. Davis

10.6 Resident decision making during bushfire threat - findings and determining factors [IF1999] [Pages 723-734]
Wendy Saunders, VUT, Australia

10.7 The behaviour of young people in a fire at a dance party in Gothenburg In 1998 [HB2001] [Pages 209 - 220]
Staffan Bengtson, Brandskyddslaget AB, Sweden

10.8 A study of occupants' behaviour in industrial/commercial fire incidents - Case Study [HB2001] [Pages 471 - 476]
Frank Hsu, Fire Cause Analysis - IFT, USA

10.9 Analysis of the number of occupants, detection times and pre-movement times [HB2001] [Pages 197 - 208]
David Charters, Arup Fire, P Holborn, South Bank University, N Townsend, London Fire Brigade, UK

10.10 Real fire data – The development of a human behaviour in fire database based on non-experimental fires [HB2001] [Pages 497 - 502]
Steven M Smith. NSW Fire Brigades, Australia

10.11 Fire deaths in Finland 1988-97 [HB2001] [Pages 489 - 496]
O Keski-Rahkonen, VTT Building Technology, J Rahikainen, City of Helsinki Resuce Department, Finland

10.12 Predicting evacuation response and fire fatalities [HB2001] [Pages 321 - 332]
Patricia Brennan, I Thomas, Victoria University, Australia

10.13 Primary group size and fatality risk in a fire disaster [HB2001] [Pages 11 - 22]
William E. Feinberg & Norris R. Johnson, University of Cincinnati, USA

10.14 Lessons learned from 9/11: The Report of the World Trade Center Building Code Task Force [HB2004] [Pages 151 - 166]
James Colgate, New York City Department Of Buildings, Stanley Dawe

10.15 An analysis of human behaviour during the WTC disaster of 11 September 2001 based on published survivor accounts [HB2004] [Pages 181 - 192]
S Blake, E.R Galea, H Westeng, A Dixon, University Of Greenwich, UK

10.16 The human response to the Sydney Christmas bushfires [HB2004] [Pages 113- 124]
Robert Alexander, NSW Fire Brigades, Australia

10.17 Account analysis of WTC survivors [HB2004] [Pages 203 - 214]
Guylène Proulx, National Research Council Of Canada, Rita F. Fahy, National Fire Protection Association, USA

10.18 Interactions between buildings, fires and occupant behaviour using a relational database created from incident investigations and interviews [HB2004] [Pages 443 - 456]
David Purser, BRE Ltd., M.E.Kuipers, Writewell Research, UK

10.19 Failure of the physical and operational safety systems in the King's Cross Underground fire associated with human factors [HB2004] [Pages 475 - 482]
Sir Bernard Crossland, Queen's University Belfast, UK

10.20 Cluster analysis of fatal fires [IF2004] [Pages 545 - 550]
Stefan Särdqvist, Swedish Rescue Services Agency, Sweden

10.21 The UK WTC 9/11 evacuation study: Methodologies used in the elicitation and storage of human factors data [IF2007] [Pages 169-181]
Ed Galea, R Day, L Hulse, A Siddiqui, University of Greenwich, J Shields, K Boyce, L Summerfield, University of Ulster and D Canter, M Marselle, M Greenall, University of Liverpool, UK

10.22 Research and regulatory reform: Three major World Trade Center evacuation studies [HB2009] [Pages 1 - 6]
James Colgate, John Hans Lee, New York City Department of Buildings, USA

10.23 Federal investigation of the evacuation of the World Trade Center on September 11, 2001 [HB2009]
[Pages 7 - 14]
Jason Averill, R Peacock, E Kuligowski, R Reneke, National Institute of Standards and Technology, D Milet, University of Colorado, N Groner, John Jay College, H Nelson, Independent Consultant, USA and G Proulx, National Research Council Canada, Canada

10.24 The World Trade Center evacuation study: Factors associated with evacuation time and injury [HB2009]
[Pages 15 - 26]
Robyn Gershon, Columbia University, USA

10.25 Fire in an operating theatre what really happens? A case study of a fire in a private hospital in Hamilton, New Zealand [HB2009] [Pages 313 - 322]
Debbie Scott, OnFire Consulting Ltd, New Zealand

10.26 Fire in Euroborg Football Stadium; Analysis of human behaviour [HB2009] [Pages 323 - 334]
Nancy Oberijé, Margrethe Kobes, Jans Weges, Jos Post, Netherlands Institute for Safety (NIFV), The Netherlands

10.27 Occupant response and evacuation at the Station Nightclub fire: An analysis of witness statements [HB2009] [Pages 633 - 638]
Rita Fahy, National Fire Protection Association, USA and Guylène Proulx, National Research Council of Canada, Canada

10.28 The UK WTC 9/11 evacuation study: An overview of the methodologies employed and some analysis relating to fatigue, stair travel speeds and occupant response times [HB2009] [Pages 27 - 40]
Edwin Galea, Lynn Hulse, Rachel Day, Asim Siddiqui, Gary Sharp, University of Greenwich, UK, Wassim Abu Abed, V Berkhahn, Leibniz Universität Hannover, Germany

10.29 'Panic' and human behaviour in fire [HB2009] [Pages 387 - 398]
Rita Fahy, National Fire Protection Association, USA, Guylène Proulx, National Research Council of Canada, Canada and Lata Aiman, Deakin University, Australia

10.30 A survey of the characteristics of human evacuation behaviors in building fires [HB2009] [Pages 399 - 410] *Wei-wen Tseng, Tzu-sheng Shen, Chien-wen Liang, Central Police University, Taiwan*

10.31 Analysis of the impact of training, communication and egress strategy in an apartment fire [HB2012]
[Pages 239 - 250]
Kristin Andrée, S Bengtson, Brandskyddslaget AB, Sweden

10.32 A behavioral survey on Fukushima residents requiring emergency evacuation outside of the residence municipality by nuclear accident [HB2012] [Pages 275- 283]
Tomoaki Nishino, S-i Tsuburaya, T Tanaka, A Hokugo, Kobe University, Japan

10.33 Fire safety and evacuation implications from behaviours and hazard development in two fatal care home incidents: Rosepark and Frampton House [HB2012] [Pages 251 - 262]
David Purser, Hartford Environmental Research, UK

10.34 The collection and analysis of data from a fatal large-scale crowd incident [HB2012] [Pages 263 - 274]
Maria Pretorius, S Gwynne, E Galea, University Of Greenwich, UK

10.35 Evacuation behavior from tsunami and fire in the aftermath of the Great East Japan Earthquake [IF2013] [Pages 919-930]
Yuki Akizuki, University of Toyama and A Hokugo, T Nishino, Kobe University, Japan

Behaviours and Risk Factors in Residential Fires

11.1 Do Smoke Detectors and Portable Extinguishers in Residents Affect Fire Safety? [HB1998] [Pages 135 - 146]
A. Steen Hansen, J. Hovden

11.2 A Closer Look at Domestic Fire Deaths [HB1998] [Pages 439 - 446]
R.A. Graham

11.3 Fatalities from Fire in One and Two Family Residential Dwellings [HB1998] [Pages 393 - 400]
R.W Loveridge

11.4 Occupants' Behaviour in Response to the High-Rise Apartments Fire in Hiroshima City [HB1998] [Pages 147 - 156]
A. Sekizawa, M. Ebihara, H. Notake, K. Kubota, M. Nakano, Y. Ohmiya, H. Kaneko

11.5 Victims and Survivors in Fatal Residential Building Fires [HB1998] [Pages 157 - 166]
P. Brennan, CESARE, Victoria University, Australia

11.6 Victims of fire? Predicting outcomes in residential fires [HB2001] [Pages 123 - 134]
Patricia Brennan & Ian Thomas, CESARE, Victoria University, Australia

11.7 Towards developing a picture of those most at risk of death by fire [HB2001] [Pages 333 - 340]
Brian Taylor, T Manifold, J Lodge, Nottinghamshire Fire Rescue Service, UK

11.8 Gender Differences in Response to Fires [HB2001] [Pages 231 - 240]
Wendy Saunders, Victoria University, Australia

11.9 CDC's activities to reduce home fire: Understanding human behavior [HB2004] [Pages 35 - 44]
Mick Ballesteros, National Center For Injury Prevention, Ellen Sogolow, Control Centers For Disease Control And Prevention, USA

11.10 Occupants, ignition and fire outcomes [HB2004] [Pages 45 - 56]
Ian Thomas, Pat Brennan, Centre For Environmental Safety And Risk Engineering, Victoria University, Australia

11.11 Fatalities in home fires where smoke alarms operated [HB2004] [Pages 57 - 66]
Rita Fahy, Joseph Molis, National Fire Protection Association, USA

11.12 The MFB's human behaviour research project [HB2004] [Pages 67 - 78]
Rob Taylor, Sharon Pepperdine, Metropolitan Fire Brigade (MFB), Australia

11.13 How to save the lives of vulnerable people from residential fires? [HB2004] [Pages 315 - 326]
Hiroaki Notake, Institute Of Technology, Shimizu Corporation, Ai Sekizawa, Masayuki Kobayashi, Manabu Ebihara, The University Of Tokyo, Atsushi Mammoto, Hochiki Corporation, Japan

11.14 Towards a psychometric risk perception model of risks from domestic fire hazards (2004) [HB2004]
[Pages 79 - 90]
Gary Bradley, and Karen Boyce, FireSERT, University of Ulster, UK

11.15 Identifying important factors affecting civilian fatality in apartment fires [IF2007] [Pages 223-234]
Ian Thomas, J Qu, A Hasofer, CESARE Victoria University, Australia

11.16 Risk factors for residential fire fatality across the lifespan: Comparing coronial data for children, adults and elders [HB2009] [Pages 639 - 644]
Helen Graesser, Michelle Ball, Dorothy Bruck, Victoria University, Centre for Environmental Safety and Risk Engineering (CESARE), Australia

11.17 Evacuation from a single family house [HB2009] [Pages 255 - 266]
Guylène Proulx, National Research Council Canada, Canada, A Parfenenko, Academy of State Fire Service of Russia, Russia

11.18 Behaviours, motivations and timescales: Towards the development of a comprehensive database of human behaviour in dwelling fires [HB2012] [Pages 218 - 229]
David Wales, O Thompson, Kent Fire and Rescue Service, UK

11.19 An investigation into fatal dwelling fires involving children aged five years and under [HB2012] [Pages 230 -238]
Amy Harpur, K Boyce, N McConnell, University of Ulster, UK

11.20 Risk factors that contribute to house fire fatalities despite the presence of a working smoke alarm [HB2012] [Pages 371 – 376]
Erin Doolan, M Ball, Victoria University, Australia

11.21 The key personal, environmental and behavioural factors contributing to smoking material-related residential fire fatalities [HB2012] [Pages 606 - 611]
Lin Xiong, D Bruck, M Ball, Victoria University, Australia

11.22 An investigation into the circumstances surrounding fatal dwelling fires involving the elderly during 1999-2009 [IF2013] [Pages 931-942]
Amy Harpur, K Boyce, N McConnell, University of Ulster, UK

11.23 “Get Out, Stay Out” versus Occupier Independence: The results of an 18 month study of human behaviour in accidental dwelling fires in Kent [IF2013] [Pages 943-954]
Owain Thompson, D Wales, Kent Fire and Rescue Service and L Hulse, E Galea, University of Greenwich, UK

Understanding Behaviour (Alternative Methodologies including Virtual Reality)

12.1 The Experimental Study of the Evacuation Using VR Simulator [HB1998] [Pages 469 - 478]
H. Kakei, H. Sato, T Sako

12.2 Comparing journalism, conventional research and legal proceedings as sources of insights into human behaviour in disasters in buildings [HB2004] [Pages 193 - 202]
Jake Pauls, Independent Consultant In Building Use And Safety & Phillip Wearne, Television Producer and Journalist

12.3 Complex systems – a holistic approach for understanding and modelling fire evacuation behaviour [HB2009] [Pages 525 - 530]
Daniel Nilsson, Lund University and Christian Uhr, Swedish Civil Contingencies Agency, Revinge College, Sweden

12.4 Hotel evacuation at night; an analysis of unannounced fire drills under various conditions [HB2009] [Pages 219 - 230]
Margrethe Kobes, Netherlands Institute for Safety and VU University Amsterdam, Nancy Oberijé, Karin Groenewegen, Netherlands Institute for Safety, Ira Helsloot, VU University Amsterdam and Bauke de Vries, Eindhoven University of Technology, The Netherlands

12.5 The use of experts for predicting human behaviour in fires [HB2009] [Pages 493 - 500]
Glyn Lawson, Sarah Sharples, David Clarke, Sue Cobb, The University of Nottingham, UK

12.6 Immersive virtual environment as a method to experimentally study human behavior in fire [IF2013] [Pages 565-570]
Kristin Andrée, D Nilsson, Lund University, Sweden and M Kinateder, University of Würzburg, Germany

Behavioural/Risk Modelling

13.1 An Occupant Response Escape Time (ORET) Model [HB1998] [Pages 299 - 308]
JD. Sime

13.2 Intentional Systems Representations are Useful Alternatives to Physical Systems Representations of Fire-Related Human Behavior [HB1998] [Pages 663 - 672]
NE. Groner

13.3 A Model for People Evacuation [HB1998] [Pages 731 - 742]
G. Mutani, M. Cali

13.4 Fire Risk Assessment Method for Building under Consideration of Actions of Security Staff by Using an Idea of Fire Phase [HB1998] [Pages 421 - 428]
M. Ebihara, H. Notake, Y. Yashiro

13.5 Assessment Method for Evacuation Safety under Consideration of Uncertainty of Human Behavior and Fire [HB1998] [Pages 429 - 438]
Y. Jkehata, M. Ebihara, H. Notake, Y. Ohmiya

13.6 3D Computer Modelling and Human Response [HB1998] [Pages 703 - 710]
M. Gradinscak, V. Beck, P. Brennan, M. Horasan

13.7 Analysis of the Probabilities that People can Detect Fires in Different Types of Hospital Ward Layout [HB1998] [Pages 253 - 264]
D.A. Charters

13.8 Probability of Multiple Deaths in Building Fires According to an International Fire Statistics Study [HB1998] [Pages 381 - 392]
O. Keski-Rahkonen

13.9 Modelling Human Behaviour within the Fire Risk Assessment Tool "CRISP" [HB1998] [Pages 447 - 460]
JN Fraser-Mitchell

13.10 Advancing human behaviour theory: Visual access and occupancy research, modelling and applications [HB2001] [Pages 37 - 40]
Jonathan Sime, Jonathan Sime Associates, UK

13.11 The process of human behavior in fires [HB2009] [Pages 627 - 632]
Erica Kuligowski, National Institute of Standards and Technology, USA

13.12 Fire response performance model for a systematic analysis of evacuation safety in buildings – A case study of a fire in a football stadium [IF2010] [Pages 861-872]
Jos Post, M. Kobes, N. Oberijé, J. Weges, Netherlands Institute for Safety, The Netherlands

13.13 Modeling and reality of evacuation process [IF2013] [Pages 509-513]
Dmitry Samoshin, V Kholshchevnikov, Academy of State Fire Service of Russia, Russia

13.14 Minimizing crisis through knowledge and anticipation: Qualitative modeling of building evacuation process [IF2013] [Pages 515-520]
Manuela Tancogne-Dejean, ATILH / University of Technology of Troyes and P Laclémence, University of Technology of Troyes, France

13.15 Modelling the response of occupants to warnings from different fire safety systems [IF2013] [Pages 577-582]
Xia Zhang, X Li, G Hadjisophocleous, Carleton University, Canada

Computational Modelling - Development, Validation and Verification

14.1 A Review of the Methodologies Used in the Computer Simulation of Evacuation from the Built Environment [HB1998] [Pages 681 - 690]
S. Gwynne, E.R. Galea, M Owen, P.J. Lawrence, L. Filippidis

14.2 Survey Analysis and Modelling of Office Evacuation using the CRISP Model [HB1998] [Pages 691 – 702] *K.E. Boyce, J.N Fraser-Mitchel, T.J. Shields*

14.3 A Comparison of Predictions from the buildingEXODUS Evacuation Model with Experimental Data [HB1998] [Pages 711 - 720]
E.R. Galea, S. Gwynne, M Owen, P.J. Lawrence, L. Filippidis

14.4 A Practical Example of an Evacuation Model for Complex Spaces [HB1998] [Pages 743 - 752]
R.F Fahy

14.5 Verifying the predictive capability of EXIT89 [HB2001] [Pages 53 - 64]
Rita F. Fahy National Fire Protection Association, USA

14.6 Simulating occupant interaction with smoke using buildingEXODUS [HB2001] [Pages 101 - 110]
Gwynne, S., Galea, E.,R., Lawrence, P.,J., And Filippidis, I. Fire safety engineering group, University of Greenwich, UK, Volker Schneider, Integrierte Sicherheits-Technik GmbH, Feuerbachstr. 19, 60325 Frankfurt / Main, Germany

14.7 Modeling contra flows during building evacuations, [IF2001] [Pages 887-897]
Rita Fahy, NFPA, USA

14.8 Predicting the evacuation performance of passenger ships using computer simulation, [IF2001] [Pages 853-864]
Edwin Galea, S Gwynne, D Blackshields, L Filippidis, P Lawrence, Univ of Greenwich, UK

14.9 Modelling of human response and behaviour in complex surroundings [HB2004] [Pages 387 - 398]
Volker Schneider, Integrierte Sicherheits-Technik GmbH, Germany

14.10 A dynamic network model for circulation and evacuation [HB2004] [Pages 483 - 488]
Shrikant B Sharma, D Brocklehurst, P Westbury, Buro Happold Engineers Limited, UK

14.11 A general, computationally intelligent model for egress simulation [IF2004] [Pages 387 - 398]
Richard Holden, A Cangelosi, University of Plymouth, UK

14.12 Limits to locality in cellular automata models of pedestrian behaviour [IF2004] [Pages 761 - 766]
Richard Holden, A Cangelosi, University of Plymouth, UK

14.13 The representation of occupant sensitivity to irritant fire gases within evacuation analysis [IF2004]
[Pages 353 - 364]
Ed Galea, S Gwynne, P Lawrence, Z Wang, University of Greenwich, UK

14.14 FDS+EVAC: Evacuation module for fire dynamics simulator [IF2007] [Pages 1443-1448]
Timo Korhonen, S Hostikka, VTT, S Heliövaara, H Ehtamo, Helsinki University of Technology, K Matikainen, University of Helsinki, Finland

14.15 Agent-based emergency egress simulation with steering behaviors [IF2007] [Pages 1411-1416]
Charles Thornton, R O'Konski, B Hardeman, Thunderhead Engineering Consultants, USA

14.16 PyroSim: A dynamic graphical user interface for the fire dynamics simulator and Pathfinder: A companion egress model [IF2007] [Pages 1417-1422]
Daniel Gemeny, A Kline, Rolf Jensen & Associates, Inc. and B Hardeman, Thunderhead Engineering Consultants, Inc., USA

14.17 Development and validation of a crawling model in an existing computational Egress Tool [IF2007]
[Pages 271-282]
Steve Gwynne, Hughes Associates, Inc. and R Muhdi, J Davis, Auburn University, USA

14.18 Simulating the evacuation of very large populations in large domains using a parallel implementation of the buildingEXODUS evacuation model [IF2007] [Pages 259-270]
Angus Grandison, Y Muthu, P Lawrence, E Galea, University of Greenwich, UK

14.19 A comprehensive modern approach to developing evacuation data capture/analysis and simulation tools for real world fire engineering [HB2009] [Pages 195 - 206]
Shrikant Sharma, V Tabak, D Brocklehurst, Buro Happold Ltd and A Sagun, D Bouchlaghem, Loughborough University, UK

14.20 Simulation of human movement by cellular automata models using different update schemes [HB2009]
[Pages 543 - 548]
Christian Rögsch, University of Wuppertal, A Schadschneider, University of Cologne, A Seyfried, Forschungszentrum Jülich GmbH, Germany

14.21 Simulating building evacuation using an agent based approach [HB2009] [Pages 549 - 554]
Nate Wittasek, Arup, USA

14.22 Flow-based microsimulation of evacuation processes [HB2009] [Pages 555 - 560]
Nick Waterson, Mott MacDonald Ltd/Imperial College London, S Le Bail, Mott MacDonald Ltd and B V H Boulanger, Imperial College London, UK

14.23 Introducing pathfinder: An agent-based egress simulator [HB2009] [Pages 567 - 572]
Charlie Thornton, Richard O'Konski, Brian Hardeman, Thunderhead Engineering Consultants, Inc., USA

14.24 Microscopic modelling of crowd movement at major events [IF2010] [Pages 873-878]
Volker Schneider, R Könnecke, IST GmbH, Germany

14.25 Implications of computer simulation and experimental studies of evacuation behaviour in the simple-shaped room [IF2010] [Pages 1467-1472]
Tomonori Sano, Waseda University, Y Yoshida, N Takeichi, Y Minegishi, Takenaka Corporation and T Kimura, A & A Co., Ltd., Japan

14.26 Microscopic modelling of agents with mobility restrictions and small-size social groups [HB2012] [Pages 377 - 385]
Volker Schneider, R Könnecke, IST GmbH, Germany

14.27 Modeling social groups and roles in egress simulation [HB2012] [Pages 569 - 574]
Mei Ling Chu, K Law, Stanford University, USA

14.28 From unbalanced initial occupant distribution to balanced exit usage in a simulation model of pedestrian dynamics [HB2012] [Pages 536 - 540]
Tobias Kretz, A Grosse, PTV AG, Germany

14.29 Validation of evacuation model using real data – What is the influence of the composition of the population? [IF2013] [Pages 991-1002]
Janne Gress Sørensen, A Dederichs, Technical University of Denmark, Denmark

14.30 Employing Validation and Verification tests as an integral part of evacuation model development [IF2013] [Pages 979-990]
Enrico Ronchi, D Nilsson, Lund University, Sweden, O Zechlin, Siemens, Switzerland and W Klein, H Mayer, Siemens, Germany

Evacuation Modelling - Reconstruction, Investigation, Comparison and Application

15.1 Analysis and Modelling of the Unannounced Evacuation of a Large Retail Store [HB1998] [Pages 291 - 298]
B. Ashe, TJ Shields

15.2 A Comparison Between Actual and Predicted Evacuation Times [HB1998] [Pages 461 - 468]
P.A. Olsson, MA. Regan

15.3 Evacuation of a Theatre: Exercise vs Calculations [HB1998] [Pages 479 - 488]
H Weckman, S Lehtimäki, S Oy, S Mannikko

15.4 Queuing, Exit-Sorting and Evacuation in Fire Emergencies: A Computer Simulation Investigation [HB1998] [Pages 721 - 730]
W.E. Feinberg, NR. Johnson

15.5 Simulation Versus Code Methods for Predicting Airport Evacuation [HB1998] [Pages 519 - 528]
D.G. Newman, N Rhodes, H.A. Locke

15.6 The Numerical Simulation of Aircraft Evacuation and its Application to Aircraft Safety [HB1998] [Pages 529 - 540]
E.R. Galea, M Owen, P.J Lawrence, L. Filippidis

15.7 The Forensic Engineering Application of Computer Modeling Techniques in the Determination of Human Response to Fire [HB1998] [Pages 753 - 760]
JL McDowell, G. C. Burton

15.8 A consideration of evacuation attributes and their functional sensitivities [HB2001] [Pages 111 - 122]
G.E. Livesey, I.R. Taylor and H.A. Donegan, School of Computing and Mathematical Sciences, University of Ulster, UK

15.9 Simulated evacuations of an airport terminal building, using the crisp model [HB2001] [Pages 89 - 100]
Jeremy Fraser-Mitchell Fire Safety Engineering Centre, FRS, BRE

15.10 Comparison of model predictions and actual experience of occupant response and evacuation in two highrise apartment building fires [HB2001] [Pages 77 - 88]
D. Yung, G. Proulx and N. Benichou, Fire Risk Management Program National Research Council of Canada Ottawa, Canada

15.11 A performance-based design of a hotel building using two egress models: A comparison of the results [HB2004] [Pages 399 - 410]
Erica Kuligowski, NIST, James Milke, University of Maryland, USA

15.12 The simulation of fire and evacuation at sea [IF2004] [Pages 755 - 760]
Ed Galea, A Grandison, L Filippidis, S Gwynne, J Ewer, P Lawrence, University of Greenwich, UK

15.13 Numerical studies on evacuation design in the airport terminals [IF2004] [Pages 749-754]
Candy Ng, W Chow, The Hong Kong Polytechnic University, China

15.14 Evacuation of a multi-level office building: Comparison of predicted results using an agent-based model with measured data [IF2004] [Pages 767 - 772]
Nick Waterson, A Mecca and J Wall, Mott MacDonald Limited, UK

15.15 A preliminary investigation of the evacuation of the WTC North Tower using computer simulation [HB2004] [Pages 167 - 180]
E.R Galea, P Lawrence S Blake, S Gwynne, H Westeng, University Of Greenwich, UK

15.16 Investigating the impact of occupant response time on computer simulations of the WTC North Tower evacuation [IF2007] [Pages 1435-1442]
Ed Galea, G Sharp, P Lawrence, A Dixon, University of Greenwich, FSEG, UK

15.17 A study on evacuation of school buildings for elementary education [HB2009] [Pages 231 - 242]
Rosaria Ono, University of São Paulo and Marcos Vargas Valentin, Valentin Arquitetura, Brazil, Edwin Galea, Z Wang, F Jia, University of Greenwich, UK

15.18 Implications of modelling and experimental studies of evacuation behaviour on stairs for multistorey building design [HB2009] [Pages 147 - 160]
David Purser, Hartford Environmental Research and Karen Boyce, FireSERT, University of Ulster, UK

15.19 Comparison of two egress models and a full-scale experiment [HB2009] [Pages 573 - 578]
Bjørg Christoffersen, AK83, Consulting Architects and Christina Söderlind, ALECTIA A/S, Denmark

15.20 Data collection and analysis of evacuation scenarios in Finland [IF2010] [Pages 1455-1460]
Tuomo Rinne, K Tillander, P Grönberg, VTT Technical Research Centre of Finland, Finland

15.21 Controlled evacuation in historical and cultural structures: Requirements, limitations and the potential for evacuation models [HB2012] [Pages 447 - 459]
Elisabetta Carattin, University of Venice, Italy and V Brannigan, University of Maryland, USA, Dan Diaconu-Şotropa, D Roşu, D Robu, Technical University "Gh. Asachi" of Iaşi, Romania

15.22 Exploring the current egress models capabilities for simulating evacuation of children through stairs [IF2013] [Pages 1013-1022]
Arturo Cuesta, O Abreu, D Alvear, University of Cantabria, Spain and F Ancona, Politecnico di Bari, Italy

15.23 Exploring the appropriateness of the aviation industry evacuation certification requirements using fire and evacuation simulation [IF2013] [Pages 1035-1047]
Edwin Galea, Z Wang, F Jia, University of Greenwich, UK

Human Behaviour and Performance Based Design/Regulation

16.1 Integrating Human Factors Issues into Engineered Fire Safety Design [HB1998] [Pages 47 - 58]
B.J. Meacham

16.2 Egress Design in Underground Transport Systems- The Case of the New Athens Metro [HB1998] [Pages 808 -817]
K.K. Papaioannou

16.3 An Engineering Model for the Estimation of Occupant Pre-movement and or Response Times and the Probability of Their Occurrence [HB1998] [Pages 13 - 30]
H.A. MacLennan, M.A. Regan, R. Ware

16.4 Value-based Fire Safety: A New Regulatory Model for Mitigating Human Error [HB1998] [Pages 105 - 114] *MD. Chubb, R.B. Williamson*

16.5 Performance Based Fire Safety Regulation Under Intentional Uncertainty [HB1998] [Pages 411 - 420]
V. Brannigan, C. Smidts

16.6 Human Behaviour Approach to Occupancy Classification [HB1998] [Pages 83 - 92]
D.K. Beller, JM Watts

16.7 Human Behaviour and the Practising Fire Engineer [HB1998] [Pages 93 - 104]
CA. Caldwell, D.L. Palmer

16.8 Fire and Life Safety Education: Bridging the Gap Between Human Behavior and Performance-Based Design [HB1998] [Pages 125 - 134]
P.A. Powell, R.L.P. Custer

16.9 Non Conventional Evaluation of Escape Behaviour Factors and Design Parameters in Fire Buildings Evacuation [HB1998] [Pages 115 - 124]
M Clerico, L. Coppola, G. Gecchele

16.10 A Rational Fire Safety Engineering Approach to the Protection of People with Disabilities in or Near Buildings During a Fire or Fire Related Incident [HB1998] [Pages 341 - 352]
C.J. Walsh

16.11 Quantification of Behaviour for Engineering Design Standards and Escape Time Calculations [HB1998] [Pages 497 - 508]
D.A. Purser

16.12 People Evacuation in Historical Buildings [HB1998] [Pages 319 - 332]
G. Gallina, G. Mutani

16.13 Determination of Evacuation Times as a Function of Occupant and Building Characteristics and Performance of Evacuation Measures [HB1998] [Pages 673 - 680]
A.W. Hesketh, O.J. Meland

16.14 Human Behaviour Modeling as Part of an Engineered Design [IF1999] [Pages 747-756]
Rita F Fahy, NFPA & J Sapochetti, Worcester Poly Inst, USA

16.15 A performance-based approach to exiting of the proposed Vancouver Convention and Exhibition Centre utilizing fire modelling, [IF2001] [Pages 1523-1528]
Harold Locke, G Gibson, Locke, MacKinnon Domingo Gibson & Assoc, Canada

16.16 A qualitative approach to children of developing countries from human behaviour in fire aspect [HB2001] [Pages 531 - 538]
Aydn Ozkaya, Kama Design, Consultancy and Training Services Ltd, Turkey

16.17 Integrating human behavior in fires into fire protection engineering design [HB2001] [Pages 403 - 410]
Morgan J. Hurley, SFPE, Daniel J. O'Connor, Schirmer Eng Corp, USA

16.18 Human Behaviour and risk based fire regulation [HB2001] [Pages 411 - 418]
Vincent Brannigan, C Smidts, University of Maryland, USA, A Kilpatrick, Glasgow Caledonian University, UK

16.19 A sensitivity analysis approach to improve evacuation performance and to optimise staff/patient ratios in hospitals and nursing homes [HB2001] [Pages 465 - 470]
Mahmut Horasan, AGAL - Scientific Services Laboratory, Australia

16.20 Fire safety for historical buildings and performance criteria for their use [HB2001] [Pages 451 - 458]
Luigi Coppola & Giulio Gecchele, Dip. Georisorse e Territorio - Politecnico di Torino, Italy

16.21 Evacuation scenarios and performance-based regulations [HB2001] [Pages 439 - 444]
Doug Beller, NFPA International, USA

16.22 To what extent can the factor of human behaviour be taken into this equation to formulate an adequate fire safety solution? [HB2001] [Pages 459 - 464]
Michael Eady, HM Fire Service Inspectorate, UK

16.23 Technical framework for fire safety that incorporates some characteristics of human behaviour [HB2001] [Pages 521 - 530]
E W Merchant and A G Copping, Edinburgh Fire Consultants Limited and University of Bath, UK

16.24 Promoting performance through pro-active fire prevention regulation. A cautionary case-study of the Ernest Adams fire, Christchurch, New Zealand, 4 February 2000 [HB2001] [Pages 419 - 430]
Mark Chubb, New Zealand Fire Service

16.25 Computational Fire Engineering - Do have what we need? [HB2004] [Pages 21 - 22]
Ed Galea, University of Greenwich

16.26 Implementation of performance-based fire safety design in Miramar Shopping Centre [HB2004] [Pages 495 - 500]
Shen-Wen Chien, Meng-Jung Lin, Yi-Hsuan Lu, Central Police University, Wen-Sheng Hsu, Forerun Consulting Co., Ltd, Wen-Long Chen, National Fire Agency Ministry Of Interior Po-Ta Huang, Ta-Jing, Fire Safety & Risk Management Consultancy Co., Ltd. Taiwan

16.27 The basis for egress provisions in US building codes [IF2004] [Pages 375 - 386]
Richard Bukowski, E Kuligowski, NIST , USA

16.28 Egress provisions and the Dutch Buildings Decree [IF2004] [Pages 425 - 434]
Peter van de Lier, DGMR Consulting Engineers, E Janse, Lichtveld Buis & Partners Consulting Engineers, The Netherlands

16.29 How reliable are commercial software-tools for evacuation calculation? [IF2007] [Pages 235-245]
Christian Rögsch, W Klingsch, H Weigel, University of Wuppertal and A Seyfried, Centre for Applied Mathematics, Germany

16.30 Identifying critical evacuation factors and the application of egress models [IF2007] [Pages 203-214]
David Purser, Hartford Environmental Research, UK and S Gwynne, Hughes Associates, Inc., USA

16.31 Assessment of human behavior parameters used in performance-based design approaches for different building use groups [HB2009] [Pages 585 - 590]
Alberto Alvarez, Brian Meacham, Worcester Polytechnic Institute, USA

16.32 Is consideration of evacuation relevant to most fire fatalities? Using the CESARE Coronial Database to investigate the utility of ASET/RSET calculations [HB2009] [Pages 411 - 420]
Ian Thomas, Dorothy Bruck, Michelle Barnett, CESARE, Victoria University, Australia

16.33 A risk contour based methodology towards improving the validity of RSET estimations in ASET/RSET evaluations [HB2009] [Pages 513 - 524]
Mahmut Horasan, Scientific Fire Services Pty Ltd, Australia

16.34 Evacuation for tall buildings in Hong Kong [HB2009] [Pages 597 - 600]
Kendrew Ng, W Chow, The Hong Kong Polytechnic University, China and C Chow, University of Cambridge, UK

16.35 A study on risk-based evacuation safety design method in fire for office buildings [IF2010] [Pages 849-860] *T Tanaka, Kyoto University, D Nii, National Institute for Land and Infrastructure Management, J-i Yamaguchi, Obayashi Corporation, H Notake, Shimizu Corporation and Y Ikehata, Taisei Corporation, Japan*

16.36 PeMMA (People Movement Modelling Analysis): A new methodology for helping to address people's safety in open and enclosed spaces [IF2010] [Pages 1445-1448]
Rodrigo Machado, S Marshall, Mark Anderson, Capita Symonds, UK

16.37 Developing a new fire safety concept for wards in hospital buildings [HB2012] [Pages 551 - 556]
Björn Peters, M Milius, P van de Lier, DGMR Consulting Engineers, The Netherlands

16.38 Analysis of egress calculation assumptions and findings for large shopping centre life safety assessments [HB2012] [Pages 422 - 434]
Mahmut Horasan, R Kilmartin, Scientific Fire Services Pty Ltd, Australia

16.39 Selecting occupant scenarios for deterministic fire safety engineering analysis [IF2013] [Pages 883-892]
Rita Fahy, National Fire Protection Association, USA and D Nilsson, Lund University, Sweden

16.40 Science or science fiction? The use of human behavioral models in fire safety regulation [IF2013] [Pages 553-558]
Elisabetta Carattin, University of Venice, Italy and V Brannigan, University of Maryland, USA

16.41 Essential system choices relevant to the capacity of escape routes in multistorey buildings [IF2013] [Pages 571-576]
Peter van de Lier, M Klein, DGMR Consulting Engineers and N Scholten, Foundation Expert Center Regulations in Building, the Netherlands

Data Generation and Use in Evacuation Modelling and Performance Based Design

17.1 Towards the Characterization of Large Retail Stores [HB1998] [Pages 277 - 290]
T.J. Shields, K.E. Boyce, G.WH Silcock

17.2 Toward creating a database on delay times to start evacuation and walking speeds for use in evacuation modeling [HB2001] [Pages 175 - 184]
Rita F. Fahy, Ph.D., National Fire Protection Association, USA, Guylène Proulx, Ph.D., National Research Council of Canada

17.3 Investigation of uncertainty in egress models and data [HB2004] [Pages 419 - 430]
Brian Meacham, Amanda Moore, James Lord, Arup, USA, Rita Fahy, National Fire Protection Association, USA, Guylène Proulx, National Research Council, Canada, Kathy Notarianni, Worcester Polytechnic Institute, USA

17.4 Pre-school and school children building evacuation [HB2009] [Pages 243 - 254]
V Kholshevnikov, State Moscow University of Civil Engineering and D Samoshin,

17.5 Evacuation drills of a cinema auditorium [HB2009] [Pages 644 - 658]
Manuela Tancogne-Dejean, Horacio Colina, Technical Association of the Hydraulic Binders Industry (ATILH) and Dominique Ilsbrock, Karine Van Niel, Central Laboratory of Police Headquarters (LCPP), France

17.6 A review of the sources of occupant performance data used in building evacuation models [HB2009] [Pages 471 - 480]
Rani Kady, Old Dominion University, Steve Gwynne, Hughes Associates and Jerry Davis, Auburn University, USA

17.7 Evacuation in complex environments – an analysis of evacuation conditions in a nuclear power plant and a tunnel construction site [HB2009] [Pages 207 - 218]
Håkan Frantzich, Daniel Nilsson, Lund University, Sweden

17.8 The standardization of human egress data [HB2009] [Pages 481 - 492]
Steve Gwynne, Hughes Associates, USA

17.9 The faults with default [IF2010] [Pages 1473-1478]
Steve Gwynne, Hughes Associates, Inc and E Kuligowski, NIST, USA

17.10 More thoughts on defaults [HB2012] [Pages 9 - 23]
Steven Gwynne, Hughes Associates, E Kuligowski, NIST, USA and M Spearpoint, University of Canterbury, New Zealand

17.11 The effects of cultural and social differences between the West and Saudi Arabia on emergency evacuation - Preliminary findings [HB2012] [Pages 74 - 85]
Majed Almejma, B Meacham, Worcester Polytechnic Institute, USA

Hazard Criteria in Performance Based Design

18.1 Engineering Analysis of Hazards to Life Safety in Fires: The Fire Effluent Toxicity Component [HB1998] [Pages 621 - 630]
G.E. Hartzell

18.2 A Methodology of Calculating the Risk to People in Building Fires [HB1998] [Pages 401 - 410]
L.Zhao

18.3 Use of the Department of Defense Operational Requirements-Based Casualty Assessment (ORCA) Software System to Determine Occupant Response to Fire and the Extinguishment Process [HB1998] [Pages 769 - 778]
G. Bennett

18.4 Safe tolerability limits for carbon monoxide? A review of the clinical and fire engineering implications of a single, acute, sub-lethal exposure [IF1999] [Pages 709-721]
Don Christian, Home Office, Fire & Emergency Planning Directorate, UK

18.5 Visibility as egress criteria: a review of the literature [HB2001] [Pages 391 - 402]
Joseph M. Fleming, Boston Fire Department, USA

18.6 Sublethal effects of smoke on survival and health [HB2001] [Pages 285 - 296]
Richard Gann, J Averill, K Butler, W Jones, G Mulholland, J Neviaser, T Ohlemiller, R Peacock, P Reneke, NIST/BFRL, J Hall, NFPA, USA

18.7 Assessment of smoke atmospheres where loss of visibility is the limiting hazard [HB2001] [Pages 297 - 308]
Anne Steen Hansen and Atle William Heskstad**. *Norwegian University of Science and Technology, Norway, **InterConsult Group ASA (ICG), Norway*

18.8 A study to identify the incidence in the united kingdom of long-term sequelae following exposure to carbon monoxide [HB2001] [Pages 253 - 262]
Professor SD Christian, University of Ulster, UK

18.9 Correlation between physiological index and psychological index during stressful fire experiments [HB2001] [Pages 263 - 274]
Katsuaki Kubota, FUJITA Corporation, JAPAN

18.10 Factors in estimating toxic hazard - People exposed, people who choose exposure, people who can't avoid exposure [IF2001] [Pages 841-851]
John Hall, NFPA, USA

Evacuation Strategies (including Phased Evacuation, Defend in Place, Use of Lifts, Escalators)

19.1 Study on feasibility of evacuation by elevators in a high-rise building -- Case Study for the Evacuation in the Hiroshima Motomachi High-rise Apartments -- [HB2001] [Pages 65 - 76]
*Ai Sekizawa^{*1}, Shinji Nakahama^{*2}, Manabu Ebihara^{*3}, Hiroaki Notake^{*3}, and Yuka Ikehata^{*2} *1 National Research Institute of Fire and Disaster, *2 Taisei Corporation, *3 Shimizu Corporation.*

19.2 To evacuate or not to evacuate: Which is the safer option? [HB2001] [Pages 477 - 488]
Hamish A MacLennan, Holmes Fire and Safety Limited, New Zealand

19.3 Highrise evacuation: A questionable concept [HB2001] [Pages 221 - 230]
Guylène Proulx, NRCC, Canada

19.4 Analysis on efficiency of evacuation using elevators in a high-rise building [HB2004] [Pages 377 - 386]
Manabu Ebihara, Ai Sekizawa, University Of Tokyo, Shinji Nakahama, Yuka Ikehata Taisei Corporation, Hiroaki Notake, Shimizu Corporation, Japan

19.5 Emergency egress strategies for buildings [IF2007] [Pages 159-168]
Richard Bukowski, NIST, USA

19.6 Selecting appropriate evacuation strategies for super tall buildings: Current challenges and needs [HB2009] [Pages 41 - 50]
Jeffrey Tubbs, Arup and Brian Meacham, Worcester Polytechnic Institute, USA

19.7 A study on high rise building fire evacuation strategies for Taipei 101 Financial Centre [HB2009] [Pages 51 - 60]
Kuang-Hua Hsiung, Fire Department of Taipei City, Shen-Wen Chien, Po-Ta Huang, Central Police University and Chiung-Hsuan Tseng, Fire Department, Taoyuan County, Taiwan

19.8 Lifts for evacuation – Human behaviour considerations [HB2009] [Pages 73 - 84]
Emma Heyes, Arup Fire, Australia and Michael Spearpoint, University of Canterbury, New Zealand

19.9 Investigating the use of elevators for high-rise building evacuation through computer simulation [HB2009] [Pages 85 - 96]
Michael Kinsey, Edwin Galea, Peter Lawrence, University of Greenwich, UK

19.10 The use of elevators for egress (Discussion Panel) [HB2009] [Pages 97 - 110]
Guylène Proulx (Convener and Moderator), National Research Council Canada, Canada, Emma Heyes, ARUP Fire, Perth, Peter Johnson, ARUP Fire, Melbourne, Australia, Glen Hedman, University of Illinois at Chicago, Jason Averill, National Institute of Standards and Technology, Jake Pauls, Jake Pauls Consulting Services, USA and David McColl, Otis Elevator Company, Canada

19.11 Extended model of pedestrian escalator behaviour based on data collected within a Chinese underground station [HB2009] [Pages 173 - 182]
Michael Kinsey, Edwin Galea, Peter Lawrence, University of Greenwich, UK

19.12 Study on availability and issues of evacuation using stopped escalators in a subway station [HB2009] [Pages 183 - 194]
Hiroyuki Kadokura, Tokyu Research Institute, Inc, Ai Sekizawa, University of Tokyo, Wataru Takahashi, ING Co Ltd, Japan, Naoko Okada, Yuji Hasemi, Shuji Moriyama, Kazutaka Hirakawa, Kota Takemori, Takahiro Hebiishi, Yunqin Lu, Waseda University, Japan

19.13 Study on phased evacuation through the analysis of total evacuation drill in a high-rise office building [IF2010] [Pages 1461-1466]
Ai Sekizawa, T Sano, H Kadokura, D Ooiwa, Tokyo University of Science, Japan

19.14 Modelling evacuation in a cinema complex: Validation study and comparison between different egress strategies [HB2012] [Pages 435 - 446]
Nicolas Henneton, CTICM, N Dreuille, K Van Niel, LCPP, France

19.15 Modelling human factors and evacuation lift dispatch strategies [HB2012] [Pages 386 - 397]
Michael Kinsey, E Galea, P Lawrence, University of Greenwich, UK

19.16 A risk perception analysis of elevator evacuation in high-rise buildings [HB2012] [Pages 398 - 409]
Axel Jönsson, J Andersson, Brandskyddslaget AB, D Nilsson, Lund University, Sweden

Evacuation and Design of Transportation Systems

Trains

20a.1 Evacuating an overturned smoke filled rail carriage [HB2001] [Pages 135 - 146]
E.R. Galea & S. Gwynne, Fire Safety Engineering Group, University of Greenwich, UK

20a.2 An evacuation simulation method for a high speed passenger train [HB2009] [Pages 613 - 618]
*Jorge Capote, Daniel Alvear, Orlando Abreu, Mariano Lázaro, Arturo Cuesta,
 University of Cantabria, Spain*

20a.3 Uncontrolled vs controlled emergency procedures in high speed passenger trains [IF2010] [Pages 813-824]
Jorge Capote, D Alvear, A Cuesta, University of Cantabria, Spain

20a.4 Evacuation from trains – Risks and measures [HB2012] [Pages 472 482]
Lena Kecklund, M Arvidsson & S Petterson, MTO Safety AB, Sweden

20a.5 The development and validation of a rail car evacuation model [IF2013] [Pages 1023-1034]
Edwin Galea, D Blackshields, P Lawrence, K Finney, D Cooney, University of Greenwich, UK

Tunnels

20b.1 Integration of human behaviour in the improvement of safety in French road tunnels [HB2004] [Pages 249 - 256]
Marc Tesson, Sylvie Lavedrine, Centre D'études Des Tunnels (CETU), France

20b.2 Towards developing an understanding of human behaviour in fire in tunnels [HB2004] [Pages 215 - 228]
T J Shields, Karen Boyce, FireSERT, University of Ulster, UK

20b.3 Assessment of road tunnel fire safety design based on emergency response and standard operating procedures for tunnel fires [HB2004] [Pages 239 - 248]
Shen-Wen Chien, Tzu-Sheng Shen, Pin-Yi Tseng, Li-Te Fang, Yi-Hui Huang, Yu-Chun Chien, Chung-Ching Chen, Central Police University, Kuang-Hua Hsiung, Fire Department Of Taipei City, Po-Ta Huang, Ta-Jing Fire Safety & Risk Management Consultancy Co., Ltd. Taiwan

20b.4 Adapting the road tunnel safety devices to the users [HB2009] [Pages 375 - 386]
Marc Tesson, Sylvie Lavedrine, Tunnel study centre (CETU) and Laurent Baudet, DIRIF, France

20b.5 Human behaviour in tunnel accidents [HB2009] [Pages 607 - 612]
Silke Eder, Johanna Brutting, Andreas Muhlberger, Paul Pauli, University of Wurzburg, Germany

20b.6 Human behavior in road tunnel fires: Comparison between egress models (FDS+Evac, STEPS, Pathfinder) [IF2010] [Pages 837-848]
*Enrico Ronchi, N Berloco, P Colonna, Polytechnic of Bari, Italy and D Alvear,
 J Capote, A Cuesta, University of Cantabria, Spain*

20b.7 Decision making and evacuation in road and rail tunnels [HB2012] [Pages 495 - 505]
Peter Johnson, D Barber, L Henderson, Arup, Australia

20b.8 Train evacuation inside a tunnel: An interview study with senior citizens and people with disabilities [HB2012] [Pages 346 - 358]
Karl Fridolf, D Nilsson, H Frantzich, Lund University, Sweden

20b.9 Optimising the arrangements for the evacuation of users from a road tunnel - the example of the Caluire Tunnel (Le Grand Lyon) [HB2012] [Pages 517 - 529]
Christelle Casse, University of Grenoble, E Meneroud, Openly, B Perrin, CETU, France

20b.10 Social influence in a virtual tunnel fire – influence of passive virtual bystanders [HB2012] [Pages 506 - 516]
Max Kinateder, M Müller, A Mühlberger, P Pauli, University of Würzburg, Germany

Underground Systems

20c.1 Way Finding in an Underground Space [HB1998] [Pages 563 - 572]
A.Tanaka, H Imaizumi, T. Jsei

20c.2 Experiments of the subway car egress [HB2009] [Pages 619 - 622]
Jong-Hoon Kim, Woon-Hyung Kim, Kyungmin College, Sam-Kew Roh, Kwangwoon University and Duck-Hee Lee, Woo-Sung Jung, Korea Railroad Research Institute, Korea

20c.3 Design of evacuation systems in underground transportation systems [HB2012] [Pages 483 - 494]
Daniel Nilsson, K Fridolf, H Frantzich, Lund University, Sweden

20c.4 Experiments of egress behavior when subway car stops on track [HB2012] [Pages 530-535]
Jong-Hoon Kim, W-H Kim, Kyungmin University, S-K Roh, Kwangwoon University, D-H Lee, W-S Jung, Korea Railroad Research Institute, Korea

Buses

20d.1 School bus evacuation: Research to practice [HB2009] [Pages 623 - 626]
Rani Kady, Old Dominion University and Korrie Allen, Eastern Virginia Medical School, USA

Aircraft

20e.1 AASK - Aircraft Accidents Statistics and Knowledge: A Database of Human Experience In Evacuation, Derived From Aviation Accident Reports [HB1998] [Pages 509 - 518]
M. Owen, E.R. Galea, P.J Lawrence, L. Filippidis

20e.2 Coping with aircraft emergencies and building fires: some exploratory qualitative (grounded theory) studies of the personal experiences of people involved in two types of emergencies [HB2004] [Pages 257 - 266]
Wendy Saunders, Victoria University, Australia

20e.3 An investigation of passenger exit selection decisions in aircraft evacuation situations [HB2009] [Pages 421 - 432]
Madeleine Togher, Edwin Galea, Peter Lawrence, University of Greenwich, UK

Ferries and Ships

20f.1 The Behaviour of Passengers during Fires on Board Passenger Ferries [HB1998] [Pages 309 - 318]
D. Noonan, TJ Shields

20f.2 Study on evaluation of escape route in passenger ships by evacuation simulation and full scale trials, [IF2001] [Pages 865 - 876]
Koichi Yoshida, M Murayama, T Itakaki, Research Institute of Marine Engineering, Japan

20f.3 Fire and evacuation risk assessment for passenger ships [IF2004] [Pages 365 - 374]
Erik Vanem, R Skjøng, DNV Research, Norway

20f.4 Response time data for large passenger ferries and cruise ships [HB2012] [Pages 460 - 471]
Robert Brown, University of Greenwich, UK / Memorial University, Canada and E Galea, S Deere, L Filippidis, University of Greenwich, London, UK

Fire Safety Attitudes, Education and Training

21.1 Attitudes to Fire Safety [HB1998] [Pages 761 - 768]
E.W. Marchant, MF.M Idris

21.2 Lessons Learned From the Trial Evacuation Scheme at the University of Canterbury [HB1998] [Pages 489 - 496]
C.M. Fleischmann

21.3 Study on the security staff's action taken in the event of a building fire [HB2001] [Pages 341 - 349]
Manabu Ebihara and Hiroaki Notake, Izumi Research Institute, Shimizu Corporation, JAPAN, Yoshiro Yashiro, Institute of Technology, Shimizu Corporation, JAPAN

21.4 Behavioural Safety: Extending the principles of applied behavioural analysis to safety in fires in public buildings [HB2001] [Pages 1 - 10]
Julian Leslie, University of Ulster, UK

21.5 The development of an education program effective in reducing the fire deaths of preschool children [HB2001] [Pages 309 - 320]
Sharon Gamache, National Fire Protection Association Center for High-Risk Outreach and Don Porth and Earl Diment, Portland, Oregon, Fire and Rescue

21.6 An investigation on the influence of the training background of facility managers on fire safety maintenance in buildings [HB2001] [Pages 431 - 438]
Kwok Kit Yuen, Siu Ming Lo, City University of Hong Kong, Hong Kong

21.7 Emergency evacuation of the gaming rooms of a large casino complex - occupant and management related issues [HB2001] [Pages 349 - 360]
Mahmut Horasan, AGAL - Scientific Services Laboratory, Australia, Rod Sinclair, Crown Ltd., Melbourne, Australia

21.8 Effectiveness of fire safety education in primary school children [HB2004] [Pages 339 - 246]
Lata Satyen, Michelle Barnett, Alexandra Sosa, Victoria University, Australia

21.9 Development of a fire safety training tool for staff in retail stores [HB2004] [Pages 355 - 366]
Dmitry Samochine, Academy of State Fire Service of Russia, T J Shields, Karen Boyce FireSERT, University of Ulster, UK

21.10 A study on school children's attitude towards firesafety and evacuation behaviour in Brazil and the comparison with data from Japanese children [HB2004] [Pages 327 - 338]

21.11 Fire response performance in a hotel. Behavioural research [IF2007] [Pages 1429-1434]
Margrethe Kobes, N Oberijé, N Rosmuller, Netherlands Institute for Safety, I Helsloot, Vrije Universiteit Amsterdam and B de Vries, Eindhoven University of Technology, The Netherlands

21.12 The use of serious gaming in training of team decision making in life threatening situations [IF2010] [Pages 1449-1454]
Margrethe Kobes, E Didderen, Netherlands Institute for Safety, The Netherlands and M van Wijngaarden, ETC Simulation, USA

Emergency Planning and Preparedness

22.1 Fire safety in densely-built wooden towns - the importance of community involvement [HB2004] [Pages 103 - 112]

Anne Steen-Hansen, Norwegian University Of Science And Technology, Trygve Steiro, SINTEF Industrial Management, Geir Jensen, Interconsult, Kjell Schmidt Pedersen, Norwegian Fire Research Laboratory, Norway

22.2 A community fire disaster as a galvanizing and fragmenting event [HB2004] [Pages 125 - 138]

Matthew Carroll, Patricia Cohn, Washington State University, David Seesholtz, USDA Forest Service, Lorie Higgins, University of Idaho, USA

22.3 Partners in wildland fire preparedness: Lessons from communities in the U.S. [HB2004] [Pages 139 - 150] *Pamela Jakes, USDA Forest Service, Linda Kruger, USDA Forest Service, Martha Monroe, University of Florida, Kristen Nelson, University of Minnesota, Victoria Sturtevant, Southern Oregon University, USA*

22.4 Landholders and fire: A two county case study from Washington State, USA [HB2004] [Pages 513 - 518]

Matthew Carroll, Patricia Cohn, Keith Blatner, Washington State University, USA